
Columbia Configuration Details

Category: Columbia

DRAFT

This article is being reviewed for completeness and technical accuracy.

Current Columbia compute nodes, Columbia21-24, are SGI Altix 4700 systems. Detailed
information about the processor and memory subsystems of these compute nodes are
provided in this article.

Processor and Memory Subsystems Statistics

Below are configuration statistics for the processor and memory subsystems for
Columbia21-24:

Columbia Processor and Memory Subsystems Statistics
Hostname Columbia21 Columbia22 Columbia23-24
Function compute compute compute

Architecture Altix 4700 (bandwidth
configuration)

Altix 4700 (density
configuration)

Altix 4700 (density
configuration)

Dual-Core Processor

Processor Itanium2 9040
(Montecito)

Itanium2 9040
(Montecito)

Itanium2 9150M
(Montvale)

Core-Clock 1.6 GHz 1.6 GHz 1.67 GHz
of Cores/Node 2 4 4
Nodes/Blade 1 1 1
Total # of Blades 256 512 256
Total # of Cores 512 2048 1024

Memory
Local Memory/Node
(2 Cores for C21 and 4
Cores for C22,
C23-24)

~3.8 GB ~7.6 GB ~7.6 GB

Total Memory ~ 1000 GB ~ 4000 GB ~ 2000 GB

L1 Cache Size/Core
32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

32KB (split into
instruction and data
cache)

Columbia Configuration Details 1

L1 Cache Associativity 4-way 4-way 4-way
L1 Cache Line Size 64 bytes 64 bytes 64 bytes

L2 Cache Size/Core 1MB: instructions
256KB: data

1MB: instructions
256KB: data

1MB: instructions
256KB: data

L2 Cache Associativity 8-way 8-way 8-way
L2 Cache Line Size 128 bytes 128 bytes 128 bytes
L3 Cache Size/Core 9MB 9MB 9MB
L3 Cache Associativity 9-way 9-way 9-way
Default Page Size 16 KB 64 KB 16 KB

Itanium-64 Processors Facts

The Itanium chip is based on the IA-64 (Intel Architecture, 64 bit) architecture that
implements the EPIC (Explicit Parallel Instruction set Computing) technology. With
EPIC, an Itanium processor family compiler turns sequential code into parallelized
128-bit bundles that can be directly or explicitly processed by the CPU without
having to interpret it further. This explicit expression of parallelism allows the
processor to concentrate on executing parallel code as fast as possible, without
further optimizations or interpretations. On the contrary, a regular (non-Itanium's
processor family) compiler takes a sequential code and examines and optimizes it
for parallelism, but then has to regenerate sequential code in a such a way that the
processor can re-extract the parallelization from it. The processor then has to read
this implied parallelism from the machine code, re-build it, and run it. The parallelism
is there, but it is not as obvious to the processor, and more work has to be done by
the hardware before it can be utilized.

•

Unlike the RISC processors (as used in the SGI Origins) that dedicate an enormous
amount of chip real estate and logic to hide cache misses (by allowing instructions to
be executed out of order, which works well when the ratio of CPU frequency to
memory frequency is relatively small), the EPIC processors rely on the software to
make sure that the data is in the proper cache at the proper time. Instructions are
issued in order, so there is no hardware mechanism to hide a cache miss.

•

The Itanium processors use long instruction words. Specifically, three instructions
are grouped into a 128-bit bundle. Each instruction is 41 bits wide. The least
significant 5 bits encode a bundle template. The template field encodes (1) the
execution units (integer units I, memory units M, floating point units F, and branch
units B) needed by the three instructions, and (2) which instructions can be executed
in parallel. For the Itanium2 chips, two bundles can be executed per cycle.

•

Four memory-load operations per cycle can be delivered from the L2 cache to the
floating-point register file. This will completely support two floating-point operations
per cycle; this translates into 4 FLOPS per cycle using the FMA operation.

•

Branch predication: without predication, parallelism would be impossible. Instead of
waiting for each section of a complex calculation to finish, it is faster if the processor
can predict the outcome and proceed on the basis of that prediction. These
prediction points are called branches, and current processors try to guess which
branch to take. If it predicts correctly, the whole calculation is validated. If it predicts

•

Category: Columbia 2

incorrectly, the string has to be thrown out and the calculation starts over. The
Itanium processor family architecture minimizes wasted calculations by taking both
possible paths to the next branch, where it follows both branches again. When it
comes to the correct result it drops the other branch path that it doesn't need, keeps
the branch that it does and it continues on with the calculation.
Speculative loads; a processor needs to access the memory to get code to execute,
but while it fetches this code it is not executing instructions. A processor based on
the Itanium processor family architecture specification can look ahead at its
instruction and load the required data from the memory early; so, when those
instructions begin to execute, they have the required data, even if the loaded data
changes.

•

128 integer registers; up to 96 rotating

Note: 32 registers are fixed and 96 are "stacked". A procedure call can allocate up to
96 of the stacked registers and still has access to the 32 common registers. Each
procedure has its own register frame, which is flexible in size. Since most procedure
calls will allocate only a few new registers, many calls can be made before the
physical limits of the register file are exceeded. A dedicated piece of hardware called
the Register Stack Engine (RSE) will quickly and automatically spill older registers to
free up space in the register stack for the new request. The RSE will also restore
spilled registers as needed.

•

128 floating-point registers; up to 96 rotating•
64 1-bit predicate registers; up to 48 rotating•
8 branch registers•
128 application registers (for example, loop or epilog counters for loop optimization)•
Performance Monitor Unit (PMU)•
Advanced Load Address Table (ALAT) ALAT keeps track of speculative, or advance
loads. However, an excessive number of ALAT comparisons that result in a failed
advance load will seriously degrade performance.

•

3 predicated instructions in a single 128-bit bundle•
2 bundles (that is, 6 instructions) per clock cycle•
6 integer units•
2 loads and 2 stores per clock cycle•
11 issue ports•

Main Memory - Global Shared Memory

SGI Altix systems dramatically reduce the time and resources required to run applications
by managing extremely large data sets in a single, system-wide, shared-memory space
called global shared memory. Global shared memory means that a single memory address
space is visible to all system resources, including microprocessors and I/O, across all
nodes. Systems with global shared memory allow access to all data in the system's
memory directly and efficiently, without having to move data through I/O or network
bottlenecks. On the contrary, clusters with multiple nodes without global shared memory
must pass copies of data, often in the form of messages, which can greatly complicate
programming and slow down performance by increasing the time processors must wait for

Category: Columbia 3

data.

If an Altix system is configured as a multi-partition cluster, global shared memory can be
achieved by using a sophisticated system memory interconnect like SGI's NUMAlink and
application libraries that enable shared-memory calls, such as MPT and XPMEM (a driver
which allows shared memory across partitions) from SGI.

To configure an Altix system as a single system image machine, special versions of a
scalable operation system from SGI is used and no XPMEM is needed. The current version
of the OS used is "2.6.16.60-0.42.9.1-nasa64k #1 SMP".

The SGI Altix systems use the non-uniform memory access (NUMA) model. Memory
subsystems from different nodes are connected through SHUB and NUMAlink
interconnects.

Latency:

The local memory latency (within a node) is about 145 nanoseconds (ns). Latency from the
other node of the same C-brick is 290 ns. Each additional router hop adds 45 - 50 ns (for
NUMAlink 3 protocol). Each meter of NUMAlink cable adds 10 ns.

Maximum number of router hops:

16 CPUs - 3 hops•
32 CPUs - 4 hops•
64 CPUs - 5 hops•
128 CPUs - 5 hops•
256 CPUs - 7 hops•

Bandwidth:

The Altix memory subsystem uses PC-style double data rate (DDR) SDRAM DIMMs. Each
SHUB supports four DDR buses. Each DDR bus may contain up to four DIMMs. The four
memory buses are independent and can operate simultaneously to provide up to 12.8
GB/sec of memory bandwidth. (Local memory bandwidth for DIMM type PC2700 is 10.2
GB/sec; and for type PC3200, it is 12.8 GB/sec.) While the local processor bus has a peak
bandwidth (between L3 cache and memory) of 6.4 GB per second, the local memory
subsystem has enough bandwidth to fully saturate the local processor demands while
leaving available bandwidth to service remote processor and I/O memory requests.

Article ID: 83
Last updated: 24 May, 2011
Computing at NAS -> Computing Hardware -> Columbia -> Columbia Configuration Details

Category: Columbia 4

http://www.nas.nasa.gov/hecc/support/kb/entry/83/?ajax=1

Category: Columbia 5

http://www.nas.nasa.gov/hecc/support/kb/entry/83/?ajax=1

	83.html

